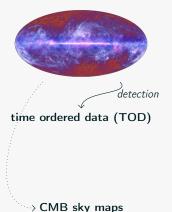
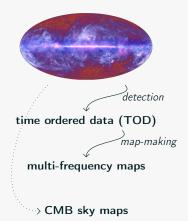
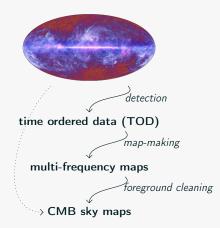
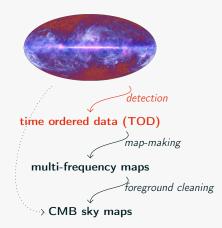


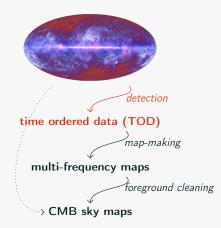
A beamconv-based TOD simulation for a LiteBIRD-like experiment

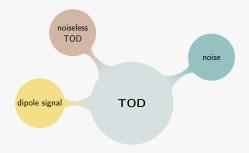

Marta Monelli

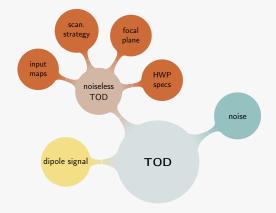

Max Planck Institut für Astrophysik Garching (Germany) September 5th, 2022

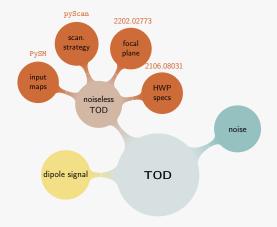




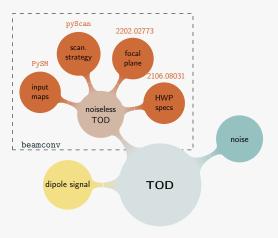


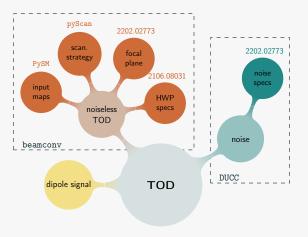






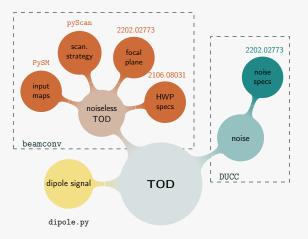
TOD: collection of the signal detected by *each of the* (4508) detectors during the whole (3-year) mission.


Simulating TOD is crucial in the planning of any CMB experiment: helps studying potential systematic effects.


beamconv: convolution code simulating TOD for CMB experiments with realistic polarized beams, scanning strategies and HWP.

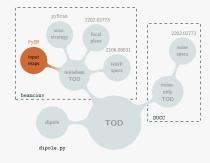
github.com/AdriJD/beamconv, A. Duivenvoorden et al "2012.10437"

beamconv: convolution code simulating TOD for CMB experiments with realistic polarized beams, scanning strategies and HWP.

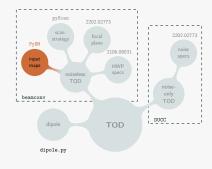

DUCC: collection of basic programming tools for numerical computation: fft, sht, healpix, totalconvolve...

github.com/AdriJD/beamconv, A. Duivenvoorden et al "2012.10437", gitlab.mpcdf.mpg.de/mtr/ducc

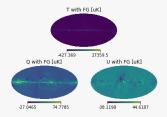
beamconv: convolution code simulating TOD for CMB experiments with realistic polarized beams, scanning strategies and HWP.


DUCC: collection of basic programming tools for numerical computation: fft, sht, healpix, totalconvolve...

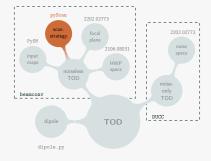
github.com/AdriJD/beamconv, A. Duivenvoorden et al "2012.10437", gitlab.mpcdf.mpg.de/mtr/ducc


Noiseless component

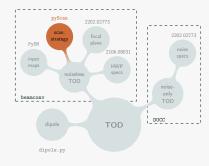
input maps


Depending on the specific interest, one can use CMB-only input maps or include foreground emission.

input maps

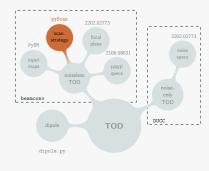

Depending on the specific interest, one can use CMB-only input maps or include foreground emission.

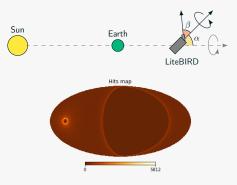
Based on the Planck Sky Model, PySM can simulate both (FG: thermal dust, synchrotron, free-free and AME).

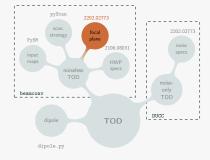


scanning strategy

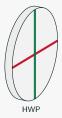
The pipeline can read pointings in input, or calculate them in a few cases.

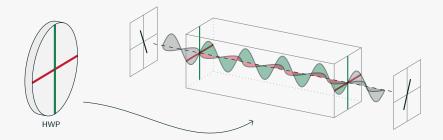

scanning strategy


The pipeline can read pointings in input, or calculate them in a few cases. For LiteBIRD, some functionalities of pyScan have been implemented in beamconv.

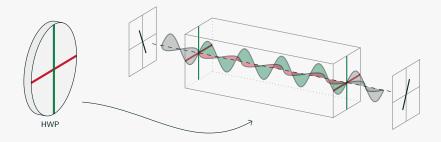

scanning strategy

The pipeline can read pointings in input, or calculate them in a few cases. For LiteBIRD, some functionalities of pyScan have been implemented in beamconv.

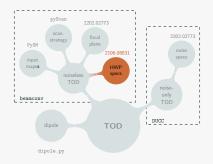

focal plane specifics


For LiteBIRD, relevant info in the Instrument Model Database (IMO):

```
{'name': 'M02_030_QA_140T',
'wafer': 'M02',
'pixel': 30,
'pixtype': 'MP1',
[...]
'pol': 'T',
'orient': 'Q',
'quat': [1, 0, 0, 0]}
```

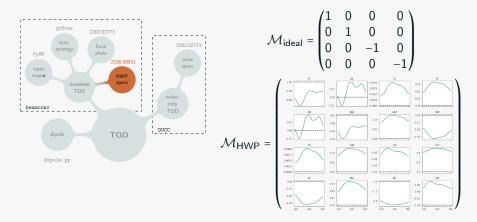

the half-wave plate (HWP)

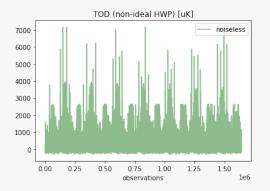
the half-wave plate (HWP)


the half-wave plate (HWP)

A rotating HWP as first optical element: reduces both 1/f noise and pair-differencing systematics.

HWP specifics


Describing radiation as S = (I, Q, U, V) and HWP effects by \mathcal{M}_{HWP} : $S' = \mathcal{M}_{HWP}S$.


$$\mathcal{M}_{\text{ideal}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

HWP specifics

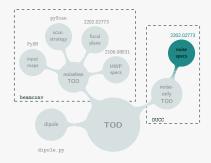
Describing radiation as S = (I, Q, U, V) and HWP effects by \mathcal{M}_{HWP} : $S' = \mathcal{M}_{HWP}S$.

Output: time ordered data

This is a day of observation for a single detector.

The signal is dominated by the foreground emission.

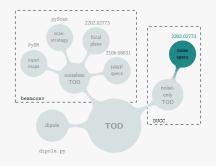
The "periodicity" corresponds to a precession period.


Output: binned maps

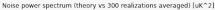
Output: binned maps

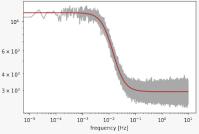
Output: binned maps

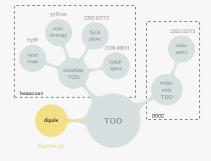
Noise and dipole


noise specifics

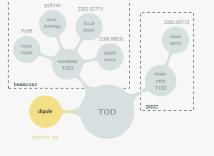
The IMO contains also the parameters that enter in the noise power spectrum:

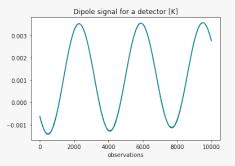

$$P(f) = NET^2 \left[\frac{f^2 + f_{\text{knee}}^2}{f^2 + f_{\text{min}}^2} \right]^{\alpha}$$


noise specifics


The IMO contains also the parameters that enter in the noise power spectrum:

$$P(f) = NET^2 \left[\frac{f^2 + f_{\text{knee}}^2}{f^2 + f_{\text{min}}^2} \right]^{\alpha}$$




The dipole signal is calculated by following the procedure employed in litebird_sim's dipole module.

injection of the CMB dipole

The dipole signal is calculated by following the procedure employed in litebird_sim's dipole module.

Moving forward

- □ adapt the pipeline for production purposes.
- □ use more realistic beam shapes;
- include frequency-dependence of HWP non-idealities;

- □ adapt the pipeline for production purposes.
- □ use more realistic beam shapes;
- include frequency-dependence of HWP non-idealities;

- □ adapt the pipeline for production purposes.
- □ use more realistic beam shapes;
- □ include frequency-dependence of HWP non-idealities;

- □ adapt the pipeline for production purposes.
- □ use more realistic beam shapes;
- □ include frequency-dependence of HWP non-idealities;

- \blacksquare adapt the pipeline for production purposes.
- □ use more realistic beam shapes;
- □ include frequency-dependence of HWP non-idealities;

☑ adapt the pipeline for production purposes.

- use more realistic beam shapes;
- □ include frequency-dependence of HWP non-idealities;

the code now runs on a cluster (160 dets on a single node, easily extendable to more dets)

- □ study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- study the impact of non-idealities on the EB angle calibration;
- □ study the impact of HWP non-idealities on Q/U maps of Tau A.

- \Box study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \square determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- study the impact of non-idealities on the EB angle calibration;
- □ study the impact of HWP non-idealities on Q/U maps of Tau A.

- \square study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- □ study the impact of non-idealities on the EB angle calibration;
- □ study the impact of HWP non-idealities on Q/U maps of Tau A.

- \square study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- study the impact of non-idealities on the EB angle calibration;
- $\hfill\square$ study the impact of HWP non-idealities on Q/U maps of Tau A.

- □ study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- □ study the impact of non-idealities on the EB angle calibration;
- \square study the impact of HWP non-idealities on Q/U maps of Tau A.

- $vec{ω}$ study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- □ study the impact of non-idealities on the EB angle calibration;
- \square study the impact of HWP non-idealities on Q/U maps of Tau A.

HWP and cosmic birefringence

- \square study how the HWP non-idealities affect the measurement of the cosmic birefringence angle β ;
- \Box determine requirements on non-idealities so that the systematics on β are well below 0.1°;
- □ study the impact of non-idealities on the EB angle calibration;
- \square study the impact of HWP non-idealities on Q/U maps of Tau A.