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Expectation: inflation-sourced
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E E B
3¢, obs = fm COS 28 — ay,, sin 23,

CMB might also carry information ZBm,obs = af sin26 + aB. cos 2.

about parity-violating new physics:
cosmic birefringence.

(time-dependent parity-violating pseudoscalar field)
EB __ EE BB\ :
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BB\ :

Crabs = (CFF = C7P)sin4p

+ CZEB cos4p.

From Planck data:
B =0.3540.14°at 68% C.L.
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Constraint expected to improve.
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the HWP: reducing systematics

A rotating HWP as first optical element:

» modulates the signal to 4fywp, allowing to “escape”’ 1/f noise;

» makes possible for a single detector to measure polarization,
reducing pair-differencing systematics.
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the HWP: inducing systematics

Mueller calculus: radiation described as S = (/,Q, U, V) and HWP effects
parametrized by Mpwep, so that S’ = MpuweS.
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outline of the talk

> framework of the simulations and their output;
» non-idealities’ impact on the Cys (simulated and analytic approx);

» impact on cosmic birefringence.
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simulation imput

» [/, Q and U input maps (ngge = 512)
from best-fit 2018 Planck power spectra;

‘ specs. values ‘

» 1 year of LiteBIRD-like scanning strategy Hve;mp 1939HZ
rpm

(mimicking pyScan). FWHM | 30.8 arcmin
offset quats. [...]

> Instrument specifics: 160 detectors from

the 140 GHz channel of LiteBIRD's I\/IFT.J‘
» Non-ideal HWP: Mueller matrix elements

from Giardiello et al. (2022) A&A 658.
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ideal and non-ideal TODs, both processed with ideal map-maker.

> TT slightly affected

» EE lost power
» BB much larger (EE shape)

> TE slightly affected
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the idea

TOD: signal detected by 4 detectors looking at the same pixel;

Detected signal modeled as d = (1 0 0) - MgetRe—gMuwpRe+y - S;
y

y

Ysky!

sky telescope HWP detector

Apply a bin-averaging (ideal) map-maker to those 4 measurements.
R mii lin
Sf= [(mqq - muu)Qin + (mqu + muq)Uin]/2
[—(mqu + Muq) Qin + (Mgq — Muu) Uin] /2
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equations for the C;s (new result!)

Expanding S in spherical harmonics:
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...Let’s see if this makes sense!
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HWP-induced miscalibration

Analytic @s satisfy the relations: our formulae suggest
~ =~ P = ~ 1 m m
CEB ~ tan(40)/2 [CEEE _ CZBB] 0= _ 2 arctan Mau T Mug
N e 2 Mgq — Myy
C/B ~tan(20)C/E

Degeneracy with cosmic birefringence
and polarization angle miscalibration!

In first approximation, HWP induces an additional miscalibration.
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the importance of calibration

3.8° ~ |0 > |B] ~ 0.35°.
Does this mean that the HWP will keep us from measuring 37

No: this effect is understood and can be calibrated.

However, it shows how important it is to carefully calibrate Mpywp.
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» determine requirements on
non-idealities so that
systematics on 3 below 0.1°;

> study impact of non-idealities
on EB angle calibration;

» study impact of non-idealities
on Q/U maps of Tau A;

» include frequency dependence.
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